If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-600m+50=0
a = 1; b = -600; c = +50;
Δ = b2-4ac
Δ = -6002-4·1·50
Δ = 359800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{359800}=\sqrt{100*3598}=\sqrt{100}*\sqrt{3598}=10\sqrt{3598}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-10\sqrt{3598}}{2*1}=\frac{600-10\sqrt{3598}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+10\sqrt{3598}}{2*1}=\frac{600+10\sqrt{3598}}{2} $
| 3x^2-24=48 | | 4a+21+21=37-21 | | x÷9-1=5 | | x+.3x=112 | | x÷9−1=5 | | 4h(-7+3h)=) | | 2x+33=x+46 | | 3f-16-4f=5 | | -2x^2+14x+6=0 | | 4a+21+12a=37-21 | | 0=-4-5n+6n^2 | | x^2-17x=-17x | | 6x+6=-34x-2x | | 4a-4+4=11+4a | | 1/6^x=36 | | 5x+11=-9x-17 | | n²+7n+6=0 | | 12x+9=12x+31 | | 4a-4+4=11+4 | | 9+(2x-2)=9 | | x^+4x+8=5x+18 | | 5x-(3+x)=2x-1 | | 5b1+5=40 | | 2/3(12-9)+10=x+(-6)+10 | | 12a+4a+21=37 | | 9x-x-5x=6x5 | | 8+(x+2)=3x+4 | | x+19=7x+7 | | –9p=44+2p | | 35-3y=35-2y | | 8w=5=4(2w=1) | | -4k+60=3k-3 |